
U.S. NAVAL ACADEMY

COMPUTER SCIENCE DEPARTMENT

TECHNICAL REPORT

Internet Protocol Security (IPSEC): Testing and Implications on
IPv4 and IPv6 Networks

Domagalski, Joshua E.

USNA-CS-TR-2008-02

August 27, 2008

USNA Computer Science Dept. ◦ 572M Holloway Rd Stop 9F ◦ Annapolis, MD 21403



Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number. 

1. REPORT DATE 
27 AUG 2008 2. REPORT TYPE 

3. DATES COVERED 
  00-00-2008 to 00-00-2008  

4. TITLE AND SUBTITLE 
Internet Protocol Security (IPSEC): Testing and Implications on IPv4
and IPv6 Networks 

5a. CONTRACT NUMBER 

5b. GRANT NUMBER 

5c. PROGRAM ELEMENT NUMBER 

6. AUTHOR(S) 5d. PROJECT NUMBER 

5e. TASK NUMBER 

5f. WORK UNIT NUMBER 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
U.S. Naval Academy,Computer Science Department,572M Holloway Rd
Stop 9F,Annapolis,MD,21403 

8. PERFORMING ORGANIZATION
REPORT NUMBER 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 

11. SPONSOR/MONITOR’S REPORT 
NUMBER(S) 

12. DISTRIBUTION/AVAILABILITY STATEMENT 
Approved for public release; distribution unlimited 

13. SUPPLEMENTARY NOTES 

14. ABSTRACT 
 

15. SUBJECT TERMS 

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 
ABSTRACT 
Same as

Report (SAR) 

18. NUMBER
OF PAGES 

24 

19a. NAME OF
RESPONSIBLE PERSON 

a. REPORT 
unclassified 

b. ABSTRACT 
unclassified 

c. THIS PAGE 
unclassified 

Standard Form 298 (Rev. 8-98) 
Prescribed by ANSI Std Z39-18 



U.S. NAVAL ACADEMY 
COMPUTER SCIENCE DEPARTMENT 

TECHNICAL REPORT 
 
 

 
 
 
 

Internet Protocol Security (IPSec): Testing and Implications on IPv4 
and IPv6 Networks 

 
 
 
 

Domagalski, Joshua E 
 

USNA-CS 
 

April 28, 2008 
 
 
 
 
 
 
 
 
 



Computer Science Department 
SI495B: Research Project Report 

Spring AY08 
 

Internet Protocol Security (IPSec): Testing and Implications on IPv4 
and IPv6 Networks 

by 
 

Midshipman Joshua  Domagalski, 081812 
 

United States Naval Academy 
Annapolis, MD 

 
_________________________ 

 
________________ 

Date 
 

Certification of Faculty Mentor•s Approval 
 

Assistant Professor Patrick Vincent 
Department of Computer Science 

 
_________________________ 

 
________________ 

Date 
 

Assistant Professor Thomas Augustine 
Department of Computer Science 

 
_________________________ 

 
________________ 

Date 
 
 

Department Chair Endorsement 
 

Captain Thomas Logue 
Chair, Department of Computer Science 

 
_________________________ 

 
________________ 

Date 



Executive Summary 
 

The research study, Internet Protocol Security (IPSec): Testing and Implications 
on IPv4 and IPv6 Networks, was conducted at the United States Naval Academy (USNA) 
with the goal of developing, employing, testing, and analyzing the IPSec protocol over 
IPv4, IPv6, and IPv4/IPv6 networks.  Specifically, the study focused on the IPSec 
algorithm and the implications for its use on IPv6 and IPv4/IPv6 networks. 

The Office of Management and Budget (OMB) has mandated the complete 
conversion from IPv4 to IPv6 by 2008.  In an effort to undertake this conversion, the 
Department of Defense (DOD) has directed the Defense Information Systems Agency 
(DISA) to devise a roadmap for the conversion to IPv6. The most important reason for 
the conversion to IPv6 is the interest in improving network security: IPv6 mandates the 
use of Internet Protocol Security (IPSec) in the IPv6 stack.  Though from cursory review, 
IPv6 (utilizing IPSec) appears to be more secure than IPv4, there are many considerations 
revealed in this study which render IPv6 security enhancements more complex to obtain 
than originally thought.    

The goals we established from the onset of the research study were threefold: 1) 
to test and analyze the implementation of IPSec over an IPv4 network, 2) to test and 
analyze the implementation of IPSec over an IPv6 network, and 3) to test and analyze the 
implementation of IPSec over an IPv4/IPv6 network.  These were to be tested using 
common, current operating systems to include Windows XP SP2 and SUSE 10.3 Linux.  
Of particular interest, we noted that IPSec poses many problems with Network Address 
Translation and in handling the incompatibility between IPv4 and IPv6 packets (due to 
differences in the two protocol•s packet headers).  In addition, we found that it is vital to 
understand the theory, implementation, and application of IPSec for the purposes of 
authentication and encryption. 

By the conclusion of the study, we were able to create a fully functional IPv4 
protocol that implemented IPSec for file transfers and ICMP packets.  Although we 
attempted to implement IPSec on an IPv6 network, we found that neither Windows XP 
Service Pack 2 nor Novell•s SUSE 10.3 fully support IPSec on IPv6 networks.  In 
addition, many of the limitations that hinder the implementation of IPSec are not caused 
by faults in the protocol itself, but rather by problems with the applications utilizing the 
protocol. 

Our research provides recommendations for future participation and study in this 
crucial area of network security. 



1. Introduction 
 
 The Internet has revolutionized communication, enabling academic institutions, 
research institutes, private companies, government agencies and individuals to have  
worldwide public access to interconnected computer networks that transmit data using 
the standard Internet Protocol (IP).  This communication phenomenon has rendered 
instant access to an exponentially growing amount of information, facilitating what has 
fast become a global economy.  No longer exclusively limited to the transmission of 
rudimentary data, there is an increasing demand to facilitate more sophisticated real-time 
communication forms such as voice and video.  Along with the inherent benefits and 
advancements of such a revolutionary communication network, attention has focused on 
the ever-growing need for information security in the both the private and public sectors.  
It is with regard to this critical need that the basic Internet Protocol has been found 
lacking; it lacks an inherent ability to provide an all-inclusive, end-to-end security 
solution in the network layer of the Open Systems Interconnection (OSI) basic reference 
model. 
 Due to the inherent nature of the Internet, where streams of data merge and flow 
through different routers and links before reaching their final destination, it becomes 
imperative to use cryptography? the study and practice of technologically hiding 
information? as the means for obtaining security and privacy.  This security attempt has 
commonly been implemented in the application layer of the OSI model.  However, if 
properly implemented in the application layer, every encryption becomes application-
specific and, as a result, a very heavy burden is placed on the system administrator.  In 
addition, many encryption schemes can fall prey to man-in-the-middle attacks or to the 
requirement that symmetric keys be exchanged over insecure channels.  To avoid these 
problems, digital certificates and public-key cryptography have been extensively utilized, 
but public key cryptography is very slow even with modern processors. 
 Thus, in an attempt to provide an end-to-end security solution governed by the 
network layer, the IP Security (IPSec) suite was implemented.  IPSec seamlessly merges 
several protocols and integrates with both IPv4 and IPv6 to provide source authentication, 
integrity, confidentiality, and replay-attack protection (and can also be used to construct 
Virtual Private Networks (VPNs), thus connecting distinct networks into a single larger 
one) without the inherent limitations of utilizing the application layer of the OSI model.  
In addition, ICMP, TCP and UDP protocols all work with IPSec.  
 
2. IPSec 
 

IPSec is the combination of many different protocols into a comprehensive 
architecture.  Currently, IPSec comprises the following protocols: AH (Authentication 
Header), ESP (Encapsulating Security Payload), IKE (Internet Key Exchange), 
ISAKMP/Oakley (Internet Security Association and Key Management Protocol), and 
associated transforms.  However, from a practical application standpoint, IPSec is 
normally applied to IP packets in the form of Authentication Headers or Encapsulating 
Security Payloads.  We briefly describe the protocols used in IPSec. 
 
2.1 AH: Authentication Headers 



AH?as the name implies? is used to authenticate IP packets.  Thus it only 
guarantees that the received packet was not modified while in transit, that it was not sent 
by a third party (packet spoofing), and, if implemented, that it is a new, non-replayed 
packet.  As such, AH does not provide any encryption capabilities and thus no 
confidentiality.  AH does not mandate the underlying authenticating algorithm that must 
be used, but rather relies upon two other protocols, ISAKMP and IKE, to determine the 
appropriate algorithm.  Two underlying authentication algorithms that all users must 
support are HMAC-SHA-96 (which is an acronym for Hashed Message Authentication 
Code-Secure Hash Algorithm-96) and HMAC-MD5-96 (Hashed Message Authentication 
Code-Message Digest 5-96).  Due to the processing power consumption and slowness of 
public key authentication methods, RSA and Digital Signature Standard (DSS) are 
currently not implemented in or defined for use with AH.   

AH can be implemented in transport mode or tunnel mode.  When implemented 
with transport mode, the AH header immediately follows the IP header but comes before 
upper-layer protocol headers.  This implementation provides basic, end-to-end 
communication protection.  When implemented with tunnel mode, the AH encapsulates 
the protected packet datagram.  Thus the original packet maintains the same IP 
addressing while an additional IP header is added before the AH header for tunnel 
addressing.  The following provides an example of an original IP datagram, an AH 
transport datagram, and an AH tunnel datagram: 

  

 
Figure 1: AH Datagram Comparison 

 
When AH is implemented, an outbound Security Association (SA) is created 

either by IKE or by manual configuration.  To provide the ability to prevent replay 
attacks, a sequence number counter is initialized to zero.  Prior to the construction of each 
AH header, the SA is incremented, thus ensuring an increasing, unique, nonzero, 

Authenticated 

IP AH TCP Data 

Normal IP Datagram: 

IP TCP Data 

AH (Transport) Datagram: 

IP 
(new) 

AH IP TCP Data 

AH (Tunnel) Datagram: 



monotonically increasing number.  As AH only extends protection to the immutable 
fields of the outer IP header, all mutable fields must be •zeroed out• before computing 
the Integrity Check Value (ICV).  The ICV is calculated by passing both the key obtained 
from the SA as well as the entire IP packet (with the mutable fields zeroed out) to the 
algorithm defined in the SA.  The ICV value is then copied into the authentication data 
field of the AH, and all of the mutable fields are then filled. 

The authenticating of immutable fields in an attempt to provide authenticity for 
the packet necessitates that the source IP address and destination IP address be included 
in the ICV.  However, this provides a unique problem concerning Network Address 
Translation (NAT) ? a network setup commonly seen.  Because NAT forwards packets 
from a gateway to host computers, and thus requires the changing of the destination IP 
address, the authentication capability of AH collapses in an end-to-end AH transport 
mode setup involving NAT. 
 
2.2 ESP: Encapsulating Security Payload 
 
 Encapsulating Security Payload, however, provides both authentication as well as 
confidentiality.  As was the case with AH, anti-replay services are provided, though not 
mandated. 
 As the ESP header is an IPSec header, it contains an SPI field which is an 
arbitrary number selected during an IKE exchange.  This SPI value is not encrypted, but 
rather is only authenticated and is used to identify the encryption algorithm and key 
needed to decrypt the packet.  All actual data that is encrypted, or protected by ESP, is 
held within the payload data field.  Due to the nature of block cipher encryptions, 
padding is used in ESP to maintain boundaries, thus providing flexibility for different 
encryption schemes.  If ESP is being implemented in transport mode, then the ESP 
header will be placed between the upper-level and the IP headers.  In other words, when 
using IPv4 in transport mode, the ESP header will be placed immediately after the IP 
header.  However, if using IPv6 in transport mode, the ESP header is placed after the 
extension headers.  For tunnel mode, on the other hand, the ESP header is •prepended• to 
the IP packet ? the IP header contains the source address of the device applying the ESP 
and the destination address is obtained from the SA.  The following provides an example 
of an original IP datagram, an ESP transport datagram, and an ESP tunnel datagram: 
 
 



 
Figure 2: ESP Datagram Comparison 

 
2.3 ISAKMP: Internet Security Association and Key Management Protocol 
 
 In order for any encryption to occur between two different entities, at least two 
phases must occur.  The first phase is communication as to the type and method of 
implementation of the encryption.  This normally establishes what algorithm to use, what 
key to use, how to authenticate each other, and what traffic needs to be encrypted.  The 
second phase is the actual encryption and relaying of encrypted information. 

IPSec•s ISAKMP (Internet Security Association and Key Management Protocol) 
governs how two peers communicate, how messages are constructed, and what states the 
peers use to secure their communication.  Although the ISAKMP protocol defines and 
provides a means of authentication, information for key exchanges, and the negotiation of 
security services, it does not define either how particular keys are exchanged or the 
necessary security associations.  ISAKMP denotes two exchange phases.  The first 
exchange phase establishes an SA (this is not the same as an IPSec SA) for the 
communication.  This relays information on how the peers will authenticate each other to 
provide protection to phase two.  The second phase establishes SAs for other protocols.  
Once phase two ends, the ISAKMP process is destroyed. 

The first step of any ISAKMP exchange is the generation and exchanging of 
cookies.  These cookies are 8 bit pseudo-random numbers generated by each entity.  Each 
cookie is unique and is normally constructed using the Photuris key exchange: a hash of 
the entity•s IP address, port, protocol and some timestamp and is referred to as the 
Initiator Cookie (IC) and the Responder Cookie (RC).  This key exchange is done prior to 
any intensive operations (i.e. Diffie-Hellman exponentiation).  This allows for the 
dropping of bogus ISAKMP messages that a denial-of-service attacker would use. 

When establishing a shared SA, a flexible parsing of SA, proposal, and transform 
payloads must be allowed.  In order to identify the communications and respective SA, a 
Message ID (MID) is given to the communication after the initial response.  In addition, 
after both cookies are transmitted, they are concatenated to form the Security Parameters 

Authenticated Encrypted & Authenticated 

IP ESP 
Header TCP Data 

Normal IP Datagram: 

IP TCP Data 

ESP (Transport) Datagram: 

IP 
(new) 

ESP (Tunnel) Datagram: 

ESP 
Trailer 

ESP 
Auth 

ESP 
Header IP TCP Data ESP 

Trailer 
ESP 
Auth 



Index (SPI) that will identify the SA for that communication.  The following table 
provides a breakdown of what is present during each respective phase of the 
communication: 
 

Table 1: ISAKMP Communications (RFC 2408) 

  IC RC MID SPI 
1) Start ISAKMP SA Negotiation X 0 0 0 
2) Response ISAKMP SA 

Negotiation 
X X 0 0 

3) Initialize other SA Negotiation X X X X 
4) Respond other SA Negotiation X X X X 
5) Other (KE, ID, etc) X X X/0 N/A 
6) Security Protocol (ESP, AH) N/A N/A N/A X 
 
 
2.4 IKE: Internet Key Exchange 
 
 As ISAKMP does not conduct an actual key exchange, the Internet Key Exchange 
(IKE) protocol augments the IPSec suite thus allowing for an authenticated key and 
agreed-upon security services between two hosts.   Like ISAKMP, IKE is a two-phase 
exchange: the first phase establishing the IKE SA and the second phase using the SA to 
negotiate further security associations for IPSec.  One unique aspect of IKE, however, is 
that it is not limited to IPSec alone, but is rather a generic protocol that can be used in 
routing protocols (RIP and OSPF). 
 IKE denotes two types of phase one exchanges, one type of phase two exchange, 
and two other exchanges.  The two types of phase one exchanges are known as •main 
mode• and •aggressive mode.•  Phase two is then known as •Quick Mode•: a phase 
where all other security services other than IKE are then negotiated ? including IPSec.  
The other two exchanges are •informational exchanges•, used for status information and 
communication errors, and •new group exchanges•, used to negotiate the use of a new 
Diffie-Hellman group. 
 

Table 2: IKE Modes and Phases 

Phase 
IKE Phase 1 IKE Phase 2 
Main Mode 
6 messages, identity protected 
Aggressive Mode 
3 messages, no identity protection 

Quick Mode 
3 messages, establishes parameters 
for ESP,AH, SHA, MD5 and SA 
lifetime and session keys 

 
 
 All of the security parameters used by IKE are referred to as a •protection suite• ? 
encryption and hash algorithm, authentication method, and Diffie-Hellman group.  These 
protection suites are negotiated between hosts by exchanging ISAKMP SA payloads ? all 
contained in transform payloads.  Most hash algorithms use the HMAC form in the form 



of a pseudo-random function (PRF).  For more information about the Diffie-Hellman, see 
Appendix A. 
 Central to the parameters established for the Diffie-Hellman exchange is the 
Diffie-Hellman group being used as it determines the key created and exchanged.  These 
are predefined groups, of which there are currently five: 

 
1. a Modular Exponentiation (MODP) group with a 768-bit modulus 
2. a MODP group with a 1024-bit modulus 
3. an Elliptic Curve Group over GF[ 2n ] (EC2N) group with a 155-bit field size 
4. an EC2N group with a 185-bit field size 
5. a MODP group with a 1680-bit modulus 

 
Algorithmically, it is considered that groups 1 and 3 and groups 2 and 4 provide similar 
levels of security.  However, there is no elliptic curve analog to the modulus prime group 
5.  After the Diffie-Hellman group is determined, the authentication utilizes one of four 
primary means for authentication for IPSec: preshared keys, exchanging encrypted 
nonces, digital signatures using the Digital Signature Algorithm, and the Rivest-Shamir-
Adelman (RSA) algorithm.  For more information about the implementation of these 
algorithms, see Appendix B.   
 
3. Research Study 
 

A primary purpose of this study was to test the full scale implementation of 
IPSec•s Authentication Headers and Encapsulating Security Payloads.  Since we wished 
to test the implications of IPSec upon NAT, the use of a router was imperative.  In 
addition, the primary OS chosen was Windows XP due to the wide commercial 
availability and support, in addition to the reliance of the Department of Defense upon 
the Windows XP OS.  As a Linux variant, we tested SUSE 10.3 from Novell. 
  
3.1 Initial Setup and Configuration 

 
Because we wanted to provide the ability to test three possible variations of IPSec 

implementation? Ipv4 only, IPv6-only, and IPv4-IPv6? we set up each of the four 
computers as a VLAN on our Cisco 3845 router.  On each computer we installed 
VMware running, in addition to the host operating system, Windows XP SP2 and SUSE 
10.3.  Initially, all computers were setup as IPv4 only.  Thus our network was designed as 
the following diagram depicts: 
 



 
Figure 3: Network Layout 

 
 After configuring the router for Network Address Translation (NAT) on each 
VLAN, we installed Wireshark on each host computer.  The following lists the manner in 
which we organized the machines: 
 
  Red-King (WIN XP SP2):    192.168.4.1/24 
  Black-King (SUSE 10.3):   192.168.4.2/24 
  Red-Queen (WIN XP SP2):   192.168.3.1/24 
  Black-Queen (SUSE 10.3):   192.168.3.2/24 
  White-King (WIN XP SP2):   192.168.2.1/24 
  Blue-King (SUSE 10.3):   192.168.2.2/24 
  White-Queen (WIN XP SP2):  192.168.1.1/24 
  Blue-Queen (SUSE 10.3):    192.168.1.2/24 
 
We also enabled the IPv6 package on the Windows XP SP2 machines for the following 
IPv6 link-local addresses: 
  
  Red-King (WIN XP SP2):    fe80::20c:29ff:fede:7734 
  Red-Queen (WIN XP SP2):   fe80::20c:29ff:fe0e:e216 
  White-King (WIN XP SP2):   fe80::20c:29ff:fe8b:76be 
  White-Queen (WIN XP SP2):  fe80::20c:29ff:fe2e:ef43 
 
After setting up the IP addresses, we conducted basic pinging and file transfer using ftp to 
ensure that the network was properly configured. 
 
3.2 IPSec Policy Configuration 
 



 We started by configuring the Windows boxes to use IPSec ESPs for all traffic.  
By accessing the secpol.msc console, we were able to select and add rules to require 
security for all traffic, both incoming and outgoing.  Windows XP offers three options 
when configuring for IPSec: Kerberos, Certificates, and Pre-shared Key.  Due to the 
nature of our setup, we used the pre-shared key •usna• on all of the Windows machines.  
The encryption algorithms allowed were DES, 3DES, and AES.  In an effort to lessen the 
complexity of the encryption in the hopes of mathematically proving how IPSec was 
being implemented, we utilized DES as our primary, or first transform.  We selected 
MD5 for the HMAC-hash.  We also selected the •Low• 768 bit Diffie -Hellman group, 
without perfect forward secrecy. 
 By setting the policy to •require• authentication, every protocol including ICMP 
was affected, thus resulting in pinging problems between the Windows and Linux boxes.  
Of note is that the authentication headers are not affected by internal NAT schemes 
between VLANs.  The only situation where the problem was made manifest was in the 
translation between external and internal 1:1 NAT schemes. 
 
3.3 IPSec File Transfer and Packet Sniffing Analysis 
 
 In order to see the ISAKMP and IKE protocols being implemented, we setup a 
test FTP Server using XLight FTP Server on White-Queen.  We then created a test text 
document with •United States Naval Academy• writt en inside.  Prior to any connection, 
we turned off all of the IPSec policies on White-Queen and Red-King and initiated 
Wireshark on the two host machines of White-Queen and Red-King.  After connecting, 
we then transferred the file.  The Wireshark output proved that the entire transaction had, 
as we intended, been entirely clear-text. 
 We then configured the IPSec policy for the two computers to require 
Authentication only and no encryption.  After conducting the same file transfer 
experiment again, we noted the implementation of the ISAKMP protocol and the 6 
messages of Main Mode followed by the 3 messages of Quick mode.  The first packet 
gave the following information regarding the Initiator Cookie, the exchange type, and the 
next payload to expect: 
 

 
 

Internet Security Association and Key Management Protocol 
    Initiator cookie: FEDFDC8BB4E8189E 
    Responder cookie: 0000000000000000 
    Next payload: Security Association (1) 
    Version: 1.0 
    Exchange type: Identity Protection (Main Mode) (2) 
    Flags: 0x00 
        .... ...0 = Not encrypted 
        .... ..0. = No commit 
        .... .0.. = No authentication 
    Message ID: 0x00000000 
    Length: 276 



Immediately following the above snippet, the transforms of the Initiator were listed as per 
the following example: 

  
For the full packet, four transform payloads were listed in the order of precedence as 
listed by the SA created on the system.  The following response included the following 
Responder Cookie:  
 

 
The Responder also replied with the first payload as both computers had been configured 
for the same hierarchy of SA transforms.  As the transform finished, the next packet 
included the nonce exchange from the Initiator as follows: 
 

Proposal payload # 1 
            Next payload: NONE (0) 
            Payload length: 152 
            Proposal number: 1 
            Protocol ID: ISAKMP (1) 
            SPI Size: 0 
            Proposal transforms: 4 
            Transform payload # 1 
                Next payload: Transform (3) 
                Payload length: 36 
                Transform number: 1 
                Transform ID: KEY_IKE (1) 
                Encryption-Algorithm (1): DES-CBC (1) 
                Hash-Algorithm (2): MD5 (1) 
                Group-Description (4): Default 768-bit MODP group (1) 
                Authentication-Method (3): PSK (1) 
                Life-Type (11): Seconds (1) 
                Life-Duration (12): Duration-Value (60) 

Internet Security Association and Key Management Protocol 
    Initiator cookie: FEDFDC8BB4E8189E 
    Responder cookie: F019425F61E3FB68 
    Next payload: Security Association (1) 
    Version: 1.0 
    Exchange type: Identity Protection (Main Mode) (2) 
    Flags: 0x00 
        .... ...0 = Not encrypted 
        .... ..0. = No commit 
        .... .0.. = No authentication 
    Message ID: 0x00000000 
    Length: 148 



 
This packet was reciprocated by the Responder with the following nonce transfer: 
 

 

Internet Security Association and Key Management Protocol 
    Initiator cookie: FEDFDC8BB4E8189E 
    Responder cookie: F019425F61E3FB68 
    Next payload: Key Exchange (4) 
    Version: 1.0 
    Exchange type: Identity Protection (Main Mode) (2) 
    Flags: 0x00 
        .... ...0 = Not encrypted 
        .... ..0. = No commit 
        .... .0.. = No authentication 
    Message ID: 0x00000000 
    Length: 192 
    Key Exchange payload 
        Next payload: Nonce (10) 
        Payload length: 100 
        Key Exchange Data (96 bytes / 768 bits) 
    Nonce payload 
        Next payload: NAT-D (draft-ietf-ipsec-nat-t-ike-01 to 03) (130) 
        Payload length: 24 
        Nonce Data 
    NAT-D (draft-ietf-ipsec-nat-t-ike-01 to 03) payload 
        Next payload: NAT-D (draft-ietf-ipsec-nat-t-ike-01 to 03) (130) 
        Payload length: 20 
        Hash of address and port: 3091D1A5834CD9B8B59054BA994F5389 
    NAT-D (draft-ietf-ipsec-nat-t-ike-01 to 03) payload 
        Next payload: NONE (0) 
        Payload length: 20 
        Hash of address and port: 03C4F5874FBB9FA58ABA4B19906DC59E 

Internet Security Association and Key Management Protocol 
    Initiator cookie: FEDFDC8BB4E8189E 
    Responder cookie: F019425F61E3FB68 
    Next payload: Key Exchange (4) 
    Version: 1.0 
    Exchange type: Identity Protection (Main Mode) (2) 
    Flags: 0x00 
        .... ...0 = Not encrypted 
        .... ..0. = No commit 
        .... .0.. = No authentication 
    Message ID: 0x00000000 
    Length: 192 
    Key Exchange payload 
        Next payload: Nonce (10) 
        Payload length: 100 
        Key Exchange Data (96 bytes / 768 bits) 
    Nonce payload 
        Next payload: NAT-D (draft-ietf-ipsec-nat-t-ike-01 to 03) (130) 
        Payload length: 24 
        Nonce Data 
    NAT-D (draft-ietf-ipsec-nat-t-ike-01 to 03) payload 
        Next payload: NAT-D (draft-ietf-ipsec-nat-t-ike-01 to 03) (130) 
        Payload length: 20 
        Hash of address and port: 03C4F5874FBB9FA58ABA4B19906DC59E 
    NAT-D (draft-ietf-ipsec-nat-t-ike-01 to 03) payload 
        Next payload: NONE (0) 
        Payload length: 20 
        Hash of address and port: 3091D1A5834CD9B8B59054BA994F5389 



As each computer had transmitted their nonces, they then entered into the information 
protection mode where the rest of the transmission was encrypted using the 768-bit 
MODP group Diffie-Hellman algorithm.  Of note, here, is that the vulnerability of a Man-
in-the-Middle attack is negated by the use of nonces uniquely generated by each 
computer by using a private, unique integer. 
 After the rest of ISAKMP and IKE had finished determining the SAs for the rest 
of the communication, Authentication Headers were inserted after the IP header as the 
following example shows: 

 
The AH SPI stays the same to identify the Security Payload being utilized by the two 
computers.  The AH Sequence iterates for every pair of packets (i.e. each packet and its 
reply).  The ICV gives the HMAC-MD5 hash utilized by the computers to provide 
authenticity for the packets. 
 We then tested the ESP of IPSec with the same transfer of the file via ftp.  All of 
the steps to include the exchanging of nonces were the same.  The difference came in that 
rather than the Authentication header appearing, the entire packet was encrypted, minus 
the IP header.  The following gives an example: 

 
The SPI and Sequence for the ESP work the same as for the Authentication Header.  
What follows, though, is the encryption of the payload using the DES-CBC algorithm. 
 
3.4 IPSec With IPv6 and Linux 
 
 Our next attempt was at trying to institute IPSec with IPv6 between the computers.  
As has been consistent with Windows XP in regards to IPv6 implementation of 
networking protocols, the user has to utilize the program •IPsec6.exe• from the command 
line.  This gives a broken table layout listing all of the SAs employed by the user on that 
system.  Though allowing for the employment of IPv6 SAs via the uploading of an SA 
file via IPsec6.exe, there is limited support online for formatting and even fewer 
examples.  Thus secpol.exe only applies to the implementation of IPSec on IPv4.  In 
addition, though we were unable to test, it is documented that encryption in the ESP 

Authentication Header 
    Next Header: TCP (0x06) 
    Length: 24 
    AH SPI: 0x1bb9f567 
    AH Sequence: 1 
    AH ICV: 246DCADEEFCAFDEE989C1EA6 

Encapsulating Security Payload 
    ESP SPI: 0xf31a0c92 
    ESP Sequence: 1 
 
0000  00 0d 56 a4 b5 4a 00 0d 56 a5 d8 b7 08 00 45 00   ..V..J..V.....E. 
0010  00 50 52 ca 40 00 80 32 12 5e c0 a8 0a 02 c0 a8   .PR.@..2.^...... 
0020  0a 01 f3 1a 0c 92 00 00 00 01 99 4f a5 89 8c 53   ...........O...S 
0030  e7 85 21 b4 d2 3e 02 14 a4 a7 a1 b8 df 81 8f 4b   ..!..>.........K 
0040  d6 84 4e aa 33 3f 2d b0 8e 44 2a 06 10 0c 7e 45   ..N.3?-..D*...~E 
0050  70 a5 7b 8f ea b5 40 66 bc 41 b8 8d 53 bc         p.{...@f.A..S. 



packet is not supported for the current implementation of IPv6 IPSec for Windows XP 
(see http://www.microsoft.com/technet/network/ipv6/ipv6faq.mspx). 
 We then attempted to implement IPSec on SUSE Linux.  The two main programs 
utilized for this operation are OpenSwan (now known as StrongSwan) and kvpnc.  
However, the only capability of kvpnc interfacing with OpenSwan was for the connection 
and establishment of VPN tunnels with other networks.  Due to time constraints, we did 
not modify OpenSwan or attempt any further application of IPSec with Linux. 
 
4. Results 
 

In this research study, we built both a fully functioning IPv4 network and a fully 
functioning IPv6 network.  On the IPv4 network, we then tested and analyzed the packets 
transferred during the IPSec implementation.  We were able to test the ramifications of 
different settings allowed by Windows XP for the implementation of IPSec to include the 
use of Authentication Headers and Encapsulating Payloads.  We were also able to 
perform basic network tasks (ping and ftp) across a network using both the AHs and 
ESPs of IPSec. 

After testing the basic network tasks and collecting the packets of the transaction 
via Wireshark, we were able to verify the process that IPSec implements, the uniqueness 
of the nonces transferred, the iteration of the Sequence Number, the SPI used to denote 
the SA established, and either the ICV or encrypted data that was sent.  However, we 
noticed that neither Windows XP nor current Linux flavors offer Encapsulating Security 
Payloads for IPv6, and that the implementation of AHs with either OS is difficult and 
requires manual system administration.  In addition, external to internal 1:1 Network 
Address Translation breaks the Authentication Header. 

 
5. Recommendations 
 

Further research in the implementation of IPSec is needed for more current 
Microsoft Operating Systems to include Windows Vista.  Many of the issues that are 
faced by Windows XP may be due to the age of the OS and its quick retirement to a 
•legacy system•.  As many of the more current operating systems provide better support 
for IPv6 in general, IPSec might also be better supported.  In addition, further research is 
necessary for the utilization of third-party implementations of IPSec, especially 
OpenSwan.   

Another area that was not tested was the employment of Virtual Private Networks 
utilizing IPSec.  This can afford the ability to test and study the implications of network 
addressing schemes, especially ones that differ between networks connected via VPNs.  
In order to effectively test this employment of IPv6, the use of the IPv6/IPv4 tunnel that 
is already established with the United States Military Academy provides an excellent 
opportunity.  However, our limitation in testing the employment of VPNs was primarily 
due to the limit of available routers that could support the construction of a VPN. 

 
6. Conclusion 
 



  The goals we established from the onset of the research study were threefold: 1) 
to test and analyze the implementation of IPSec over an IPv4 network, 2) test and analyze 
the implementation of IPSec over an IPv6 network, and 3) test and analyze the 
implementation of IPSec over an IPv4/IPv6 network.  These were to be tested using 
common, current operating systems to include Windows XP SP2 and SUSE 10.3 Linux. 
 The first goal was achieved as we were able to fully implement, test, and analyze 
the IPSec protocol over an IPv4 network.  Microsoft Windows XP SP2 provides a 
relatively easy console for the administration of IPSec SAs and Policies for the computer 
and provides a flexibility to allow for interoperability between many other setups.  We 
were not able to test on the Linux machine due to the nature of the implementation of 
IPSec, namely that of VPNs solely.  From the testing of the IPSec packets, we were able 
to identify and track both the ISAKMP and IKE protocols and the construction of the 
SAs between two different computers.  We also successfully transferred a file using the 
File Transport Protocol (FTP) successfully employing both AHs and ESPs.   
 The second goal was not fully achieved as we were unable to implement a fully 
working test case of IPSec over IPv6.  However, due both to documentation as well as 
our testing, Windows XP can be said to not fully support the IPSec protocol in regards to 
IPSec.  Though not modified prior to compilation, the OpenSwan third-party 
implementation of IPSec for SUSE also did not provide IPv6 support.  As Linux does not 
have other native employments of IPSec, it can be assumed that current versions of Linux, 
though natively supporting IPv6, per se, do not fully support IPSec for IPv6.  Although 
we were unable to test the use of IPSec over a network that employs both IPv4 and IPv6, 
it can be assumed that the difference in headers between the two protocols breaks the 
ability for IPSec to work, especially as it is employed on the Network Layer.  Further 
thoughts on the general security implications of IPSec are offered in Appendix C. 
 Therefore, IPSec affords networks many added security features.  Rather than 
having to rely upon system administration for the security of individual applications, all 
protocols can be safely encrypted on an end-to-end basis.  However, IPSec does not work 
with Network Address Translation.  This is particularly disconcerting as the current use 
of the IPv4 protocol depends entirely upon the employment of NAT for the salvation of 
its limited address space.  Thus it appears that IPSec is better suited for IPv6.  However, 
to date, there is limited support for the implementation of IPSec in IPv6 by current 
vendors. 



Appendix A: Diffie-Hellman and Key Creation 

 The Diffie-Hellman key exchange algorithm, invented in 1976, was the first 
public-key algorithm to be developed.  The beauty of the Diffie-Hellman algorithm is its 
openness and resultant simplicity.  The strength of the algorithm is derived from the 
difficulty in calculating discrete logarithms in finite fields.  Of note, however, is the fact 
that that the Diffie-Hellman algorithm cannot be used for encryption or decryption, but 
rather for key exchange and distribution.  A similar algorithm, the ElGamal scheme can 
be used for both digital signatures and encryption. 
 The following presents an example of a Diffie-Hellman exchange: 

 
g  n 

x   <--------------------------------------->   y 
 

xk        yk  
 

ng xk mod      ng yk mod  
 

  nng xy
kk modmod       nng yx

kk modmod  
 

ng xy kk mod        ng yx kk mod  
  
 The above gives a basic communication between two parties, in this case x and y, 
and how the Diffie-Hellman is derived for their communication.  At the start of the 
communication, x and y both agree on n, a large prime number, and g, such that it is a 
primitive mod n, where mod( , ) ( )aa n a n floor n   .  These two numbers can be passed 

in the open over an insecure system.  After the exchange of g and n, x chooses a random 
large integer, xk , and y chooses a random large integer, yk .  These are kept secret by the 
parties and are not transmitted as is to other parties.  When a random large integer has 
been chosen, x then calculates and transmits modxkg n  to y.  Similarly, y calculates and 
transmits modykg n  to x.  Both x and y then take the values transmitted to them and 
multiply to the power of their key, their selected random large integer, such that x 

calculates  mod mod
x

y
kkg n n .  This simplifies to mody xk kg n  for x which is equal to the 

calculation for y: modx yk kg n .  Because mody xk kg n    modx yk kg n , both parties can 
communicate in the open, sharing publicly g and n, while never allowing for mody xk kg n  
to be calculated by a third party. 



The use of the Diffie-Hellman algorithm is utilized by Internet Key Exchange 
Protocol for the development of a common key between two parties for the construction 
of both Authentication Headers and Encapsulating Security Payload.  The Diffie-Hellman 
group is determined by the ISAKMP SAs that are established between the two parties and 
offer, besides different bit and field sizes, the use of either modulus prime or an elliptical 
curve analog. 

One weakness of the use of the Diffie-Hellman algorithm, however, is the 
vulnerability to Man-in-the-Middle-Attacks.  If a person, say z, can place themselves 
between x and y and perform the Diffie-Hellman on both sides of the communication, 
then x and y will not be able to detect an eavesdropper in the communication.  This 
demonstrates the reason for ISAKMP•s use of cookies, specifically the Photuris key 
exchange, and SPIs to identify and designate the communication and actual individuals 
involved.



Appendix B: Internet Key Exchange and the method of Authentication 
 
For the IKE, each party generates a secret key (SK) and then three other secrets 

dependent on the SK .  These three are the dSK , used for deriving keying material for 
IPSec, the aSK , used for providing data integrity and authentication, and eSK , used for 
encrypting IKE messages.  Both the initiator and the responder provide their cookies (IC 
and RC) in addition to their nonce (Ni and Nr).  Of note, the Diffie-Hellman secret 
generated is also implemented in the SK  generation.  Thus the SK is created in the 
following manner where •.• denotes concatenation : 

 
For preshared keys: 

( , . )SK PRF preshared key Ni Nr   
 

For digital signatures: 
  ( . , )xySK PRF Ni Nr g  
 

For nonces: 
  ( ( . ), . )SK PRF hash Ni Nr IC IR  
 
where PRF usually denotes the HMAC-version of the aforementioned pseudo-random 
function that was negotiated.  Once the SK has been derived, the three other secrets are 
derived: 
 

 

( , . . .0)

( , . . . .1)

( , . . . .2)

xy
d

xy
a d

xy
e a

SK PRF SK g IC IR
SK PRF SK SK g IC IR
SK PRF SK SK g IC IR







 

 
If the required number of bits is larger than what is initially given, then the eSK  is 
expanded via feedback and concatenation in the following manner: 
 

 

1. 2. 3. 4
1 ( ,0)
2 ( , 1,1)
3 ( , 1,2)
4 ( , 2,3)

Key Key Key Key Key
Key PRF SK
Key PRF SK Key
Key PRF SK Key
Key PRF SK Key







 

 
During Phase 1, exchanges are authenticated by both sides computing unique hashes in 

the following manner: 
 

 Initiator•s Hash: 
 



 ( , . . . . . )i r
II HASH PRF SK g g IC RC SA ID   

 
 Responder•s Hash: 
 
 ( , . . . . . )r i

RR HASH PRF SK g g RC IC SA ID   
 
  
 



 Appendix C: IPv6 and General Security Implications 
 

In the face of ultimately reaching IP address capacity and the ever-growing 
security threat posed by the inherent deficiencies in the present IPv4 Internet Protocol 
version, the world incredulously continues to move slowly towards the only conceivable 
solution: conversion to Internet Protocol version 6 (IPv6).  But universal conversion to 
IPv6 does not come without a price.  Hindrances such as time, cost and inherent 
conversion complexities thwart the necessary efforts of more well-developed countries 
such as the US which pragmatically dismisses the conversion as an unnecessary change 
while many developing countries see it as the only means of building their IT 
infrastructure where critical IP address capacity is available.  Additionally, other factors 
such as cell-phone technologies which utilize IPv6 are driving the need for this universal 
conversion.    

But besides the greater address capacity, a benefit that is often promoted for IPv6 
conversion is that of the mandatory inclusion of IPSec into the new protocol.  However, 
this tends to be shortsighted as the problems that have belabored the implementation of 
IPSec with IPv4 are the same problems that will be faced with IPv6 (namely key 
management, configuration complexities, et cetera).  An aspect where the IPv6 protocol 
does provide an innate benefit regarding network security is the lack of Network Address 
Translation.  IPv6 does not suffer from the issue of small subnets as its default subnet 
size is actually 64 bits.  This size greatly hinders both the ability to scan entire subnets 
and the ability for many worms to propagate at the speeds seen today.  In addition, the 
multiple addresses assigned to a given node (link-local, site-local, global) make spoofing 
attempts much more transparent and more preventable.  This is mainly due to the fact that 
link-local address is used for infrastructure communication. 
 However, IPv6 does not just provide possible solutions to the current problems.  
Because it is a rather new protocol in development, there is a current lack of operational 
experience as well as software support readily available with IPv4.  Many 
implementations of IPv6 are experimental by nature, and any serious, full-scale network-
wide implementation of IPv6 requires the use of Dual-Stacked IPv4 services to make a 
fully-functioning network.  This obviously necessitates the presence of a duplicitous IPv4 
network.  Therefore, regardless of the growing demand to convert to IPv6, IPv4 by 
necessity is not going away any time soon.  Ironically, it will pose an increasing 
vulnerability as attention is turned increasingly from IPv4 to IPv6.   
 Inherent specifically to IPv6, IPSec does not give backwards compatibility.  As 
the headers are starkly different, the end result is the turning off of IPSec features that 
were actually created to add security.  Thus we have to make our networks more insecure 
to allow for cross-protocol support.  In addition, key management plays a huge role in the 
implementation of IPSec for IPv6, especially due to the large nature of IPv6 networks 
and the resultant costs involved.   
 Although IPv6 conversion provides many solutions and also poses some new 
problems in the issues of network security, many of the fundamentals remain the same 
regarding the new protocol.  IPv6 is not, by its nature, more secure.  What will make it 
more secure is the manner by which it is implemented and the cost-benefit and forward-
looking decisions that will have to be made by management in both the private and public 
sectors.      



Appendix D: Lua Source Code Demonstrating Diffie-Hellman 
 
--ikea.lua 
print'Alice and Bob wish to communicate in such a fashion as to 
publicly agree on a key, yet hide their secrets' 
 
print'Alice and Bob agree on a base number (g).  Enter g 
(normally 2 or 5):' 
g = io.stdin:read'*l' 
 
 
print'Alice and Bob also agree on a prime number (n). Enter n:' 
n = io.stdin:read'*l' 
 
print'Alice wishes to keep a secret (kx). Enter kx:' 
kx = io.stdin:read'*l' 
 
print'Bob also wishes to keep a secret (ky). Enter ky:' 
ky = io.stdin:read'*l' 
 
print('g= ',g) 
print('n= ',n) 
 
gkx = math.pow(g, kx) 
gky = math.pow(g, ky) 
 
b = gkx % n 
e = gky % n 
 
ekx = math.pow(e, kx) 
bky = math.pow(b, ky) 
 
fin1 = ekx % n 
fin2 = bky % n 
 
print('kx= ', kx) 
print('ky= ', ky) 
print('g^kx= ', gkx) 
print('g^ky= ', gky) 
print('b= ', b) 
print('e= ', e) 
print('(g^kx mod n)^ky = ',bky) 
print('(g^ky mod n)^kx = ',ekx)  
print('(g^kx mod n)^ky mod n = ', fin1) 
print('(g^ky mod n)^kx mod n = ', fin2)   
print('Press any key to exit') 
zzend = io.stdin:read'*l'



References 
 
[1] S. Convery, Network Security Architectures, Cisco Press, 2004.  
 
[2] N. Doraswamy and D. Harkins, IPSec: the New Security Standard for the Internet, 
Intranets, and Virtual Private Networks, 2nd ed. Upper Saddle River: Prentice Hall, 2003.  
 
[3] B. Schneier, Applied Cryptography, 2nd ed. John Wiley & Sons, Inc, 1996.  
 
[4] J. Snader, VPNs Illustrated: Tunnels, VPNs, and IPsec, Addison-Wesley, 2006.  
 
[5]  D. Maughan, Internet Security Association and Key Management Protocol 
(ISAKMP), IETF RFC 2408, 1998; http://www.faqs.org/rfcs/rfc2408.html. 
 
[6] D. Harkins, The Internet Key Exchange (IKE), IETF RFC 2409, 1998; 
http://www.faqs.org/rfcs/rfc2409.html. 
 
[7] Microsoft Corporation, •IPv6 for Microsoft Windows: Frequently Asked 
Questions•, Microsoft Corporation, 2002, 
http://www.microsoft.com/technet/network/ipv6/ipv6faq.mspx. 
 
 
 
 


